National Center for Immunization & Respiratory Diseases

Estimating Impact of 13-valent Pneumococcal Conjugate Vaccine (PCV13) on Pneumococcal Pneumonia Among U.S. Adults

Ryan Gierke, MPH

Advisory Committee on Immunization Practices October 24th, 2018

Pneumococcal pneumonia

- Streptococcus pneumoniae (pneumococcus) is a common etiology of allcause pneumonia among adults
- True burden of pneumococcal pneumonia is unknown due to limitations of available diagnostic tests
 - The ratio of bacteremic to non-bacteremic pneumococcal pneumonia estimated to be around 1 to 4 before PCV13 introduction¹
 - Blood culture: low sensitivity
 - Commercially available urine antigen test (UAT): 75% sensitivity and not routinely used by all providers^{2, 3}

¹Said M.A., et al (2013). Estimating the burden of pneumococcal pneumonia among adults... PloS one. 8(4):e60273. Epub 2013 Apr 2

²Horita, N., et al (2013). Sensitivity and specificity of the Streptococcus pneumoniae urinary antigen test... Respirology 18(8): 1177-83.

³Sinclair, A., et al (2013). Systematic review and meta-analysis of a urine-based pneumococcal antigen test... J Clin Microbiol 51(7): 2303-2310.

PCV13 Impact on Pneumococcal Pneumonia

- Pneumococcal conjugate vaccine use among children has dramatically reduced invasive pneumococcal disease in adults through indirect effects
- Reductions in pneumonia hospitalizations among children (direct effects) and adults (indirect effects) were documented after introduction of conjugate vaccine in children^{1,2}
- PCV13 demonstrated efficacy/effectiveness against PCV13-type pneumococcal pneumonia among older adults^{3, 4}

¹Alicino C., et al (2017). The impact of PCV10 and PCV13 on hospitalization for pneumonia in children... Vaccine 35:5776–5785.

²Tsaban G., et al (2017). Indirect (herd) protection, following pneumococcal conjugated vaccines introduction... Vaccine. 35:2882–2891.

³Bonten M, et al (2015). Polysaccharide Conjugate Vaccine against Pneumococcal Pneumonia in Adults. N Engl J Med. 372:1114–25.

⁴ McLaughlin, J. M., et al (2018). Effectiveness of PCV13 Against Hospitalization for Community-Acquired Pneumonia in Older US Adults: .. Clin Infect Dis.

Surveillance for Non-invasive Pneumococcal Pneumonia (SNiPP): Objectives

- Estimate the burden of non-invasive pneumococcal pneumonia
- Evaluate the impact of the 2014 ACIP recommendation for routine PCV13 use among adults 65 years and older

SNiPP Case Ascertainment

- Built into Active Bacterial Core surveillance (ABCs)
- Cases defined as adults (≥18 years) hospitalized with clinically or radiographically confirmed pneumonia and a positive pneumococcal UAT
 - Cases excluded if IPD or another positive UAT within 30 days
- Prospective since 2015 with retrospective data collection to 2013
 - Pre ≥65 year old PCV13 recommendation 2013–2014
 - Post period 2015–2016

SNiPP Catchment Area 2013–2016

Average annual population under surveillance = 16 million

Demographics of UAT Positive Case-Patients, 2013–2016

	Pre-PCV13, 2013-2014 (N= 1,856) n (%)	Post-PCV13, 2015-2016 (N= 1,573) n (%)
Age groups, years		
18–49	348 (19)	297 (19)
50-64	554 (30)	537 (34)
≥65	954 (52)	739 (47)
Median age, years (range)	65 (18–102)	63 (18–102)
Male	855 (46)	744 (47)
Hispanic	86 (5)	96 (6)
Race:		
White	1,200 (65)	983 (63)
Black	433 (23)	418 (27)

UAT Positive Case-Patients: Diagnoses and Treatment, 2013–2016

	Pre-PCV13, 2013-2014	Post-PCV13, 2015-2016		
	(N= 1,856)	(N= 1,573)		
	n (%)	n (%)		
Community onset ¹	1,602 (86)	1,354 (86)		
Radiographically diagnosed pneumonia	1,608 (86)	1,396 (88)		
ICU care	655 (35)	494 (32)		
Died	119 (7)	88 (6)		
Median length of hospitalization, days (range)	5 (0-152)	5 (0-95)		
Immunocompromising condition ²	764 (40)	665 (42)		
High risk condition ³	1,529 (82)	1,297 (83)		
Any pneumococcal vaccine receipt (during current hospitalization)	259 (14)	151 (10)		
Received PPSV23 0–3 days before UAT	61 (3)	21 (1)		

¹Not having been residing in a hospital setting or admitted at least 72 hours before UAT obtained

²Immuncompromising conditions defined as those for which PCV13 and PPSV23 are recommended for adults 19–64 years old

³High risk conditions defined as those for which PPSV23 is recommended for adults 19–64 years old

Adjustments to UAT Positive Case Count to Estimate Incidence

- Not all pneumonia cases are tested by UAT
 - Adjust by the proportion of pneumonia discharges¹ tested by pneumococcal UAT
- Not all hospitals use UAT
 - Adjust by the proportion of pneumonia discharges¹ in the catchment area seen at hospitals offering pneumococcal UAT
- UAT not 100% sensitive
 - Adjust to account for pneumococcal UAT sensitivity of 75% ^{2, 3}
- ¹Pneumonia defined as 1st ICD pneumonia or empyema or 1st ICD sepsis with pneumonia or empyema elsewhere
- 2Horita, N., et al (2013). Sensitivity and specificity of the Streptococcus pneumoniae urinary antigen test... Respirology 18(8): 1177-83.
- ³Sinclair, A., et al (2013). Systematic review and meta-analysis of a urine-based pneumococcal antigen test... J Clin Microbiol 51(7): 2303-2310.

Estimating Incidence from Catchment Area Hospitals

- Sites obtain total number of all-cause pneumonia discharges within the catchment area
- Defined all-cause pneumonia as 1st ICD code pneumonia or empyema, or 1st ICD code sepsis with pneumonia or empyema listed elsewhere
- Select hospitals obtain a random sample of pneumonia discharges to determine the proportion tested by UAT

Model: Percent Pneumonia Tested by UAT

- Regular fixed effects logistic regression
 - Inputs: sampled number of pneumonia cases and number of pneumonia tested within the sample
 - Predictors: year, age group, hospital characteristics¹, site
 - Interactions: site*year, site*age group, year*age group
- Output: annual % pneumonia tested by UAT for hospitals with at least one pneumonia patient tested by UAT
 - By year, age group, and hospital

¹Hospital characteristics including size, case mix index, payment scheme, teaching and university affiliation assessed

Model: Percent Pneumonia Positive by UAT

- Generalized linear mixed effects
 - Inputs: UAT positive cases, % pneumonia tested estimated from logistic regression model
 - Predictors: year and age group (fixed effects)
 hospital and site (random effects)
 - Interactions: none significant
- Output: annual % of pneumonia positive by UAT
 - Aggregated for all hospitals and sites included in the model
 - By age group and year

Model Assumptions

- UAT testing among pneumonia cases is random, after stratifying by hospitals, age group, and year
- Hospital characteristic effects are assumed to be random (different, but following a common normal distribution)
- Testing practices from hospitals reporting UAT cases and those not reporting follow a similar distribution

Final Adjustments

- Estimate number of non-invasive pneumococcal pneumonia cases by
 - Multiplying percent UAT positive (obtained from the generalized mixed linear model) by the total number of pneumonia cases within the catchment area
 - Inflating the case count to account for UAT sensitivity (75%)

Estimated Non-Invasive Pneumococcal Pneumonia Incidence Pre vs. Post PCV13 Recommendation for Adults ≥ 65 Years Old

	Numbe	er of cases	<u> </u>						
Age group (years old)	Reported	Adjusted	Adjusted incidence per 100,000 n (95%CI)						
Pre PCV13 Recommendation for ≥65 Year Olds (2013–2014)									
18–49	249	524	11 (8, 16)						
50–64	391	790	39 (27, 53)						
≥65	625	1725	128 (92, 174)						
Post PCV13 Recommendation for ≥65 Year Olds (2015–2016)									
18–49	203	357	7 (5, 11)						
50–64	364	758	36 (26, 49)						
≥65	457	1196	83 (60, 113)						

Annual Non-Invasive Pneumococcal Pneumonia Incidence by Age Group, 2013-2016

Annual Non-Invasive Pneumococcal Pneumonia Incidence by Age Group, 2013-2016

Comparing Non-Invasive to Invasive Pneumonia

Invasive pneumococcal pneumonia incidence in ABCs sites

Key points:

- Non-invasive pneumonia incidence 3-7 times higher than invasive pneumococcal pneumonia
- Changes in the incidence of non-invasive pneumonia and invasive pneumococcal pneumonia similar
- Post 2014 recommendation, no additional reductions observed

Limitations

- UAT testing practices are likely not at random
- Adjusted incidence based on ICD codes for pneumonia: coding practices may change over time and by hospital/site
- Relatively short time periods for both pre- and post-PCV13 data
- Serotype distribution unknown
 - Unable to determine burden of vaccine-type pneumonia
 - Unable to determine if increases in non-vaccine type pneumonia minimize overall reductions
- Direct effects cannot be estimated without pneumococcal vaccination status of cases

Conclusions

- Pneumococcal pneumonia continues to contribute to a high burden of disease among adults
- Decreases most dramatic before 2014 (indirect PCV13 effects)
- No additional reductions apparent after 2014
- Changes in incidence of pneumococcal pneumonia similar to those observed in invasive pneumococcal pneumonia during 2013-2016

Acknowledgements

Cali	fornia	Co	araia				
Call		Geo	orgia				
	Art Reingold		Monica Farley	Nev	w York	CDC	C ABCs Team
-	Gretchen Rothrock		Amelia Blumberg		Nancy Bennett	-	Melissa Arvay
	Mirasol Apostol		Amy Tunali		Alison Muse	-	Huong Pham
	Tara Scheuer		Stepy Thomas		Suzanne McGuire	-	Tamar Pilishvili
	Alison Ryan				Kari Burzlaff		Cyndy Whitney
		Ma	ryland		Rachel Wester		Ryan Gierke
Cold	orado		Lee Harrison		Debra Blog		Olivia Almendares
	Karen Edge		Kathleen Shutt				Stephanie Schrag
	Nisha Alden		Vijitha Lahanda Wadu	Or	egon		Tracy Pondo
	Samantha Hoss		Rosemary Hollick		Ann Thomas		Nong Shang
			Rachel Park		Tasha Poissant		Trey Spiller
Con	necticut		Joanne Benton		Heather Jamieson		Fernanda Lessa
	Susan Petit					-	Gayle Langley
	Summer Shore	Mir	nnesota	Ten	nessee		
	Matthew Cartter		Ruth Lynfield		William Schaffner		
	Therese Rabatsky-Erh		Kathy Como-Sabetti		Tiffanie Markus		

Brenda Barnes

Katherine Schleiss

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

